曹立新

发布时间:2018-04-18信息来源:材料科学与工程学院浏览次数:19669

曹立新,女,教授(三级),博士生导师

联系方式:0532-60891901(办) Emailcaolixin@ouc.edu.cn


学术简历

1987-1991, 吉林大学(理学学士);

1991-1993,吉林省石油化工设计研究院(助理工程师);

1993-1996,吉林大学(理学硕士);

1996-1999,中科院长春应用化学研究所(理学博士);

1999-2001,中科院长春光机与物理研究所,中科院激发态物理开放实验室(博士后);

2001-至今,中国海洋大学,教授;

2012.7-2012.10, 美国橡树岭国家实验室(高级访问学者)。


社会兼职

国家自然科学基金委工程与材料学部同行评议人;教育部科技奖励评审专家;山东省、青岛市科技项目评审专家。


研究领域

1. 光电功能材料的制备、改性及其在环境、新能源等领域的应用研究;

2. 发光量子点的合成、改性、结构性质及其在光电领域的应用研究;

3. 新型传感器材料的设计合成及其在重金属离子检测、海洋污染检测等领域的应用研究;

4. 轻质合金的腐蚀、防护研究。


代表性科研项目

1. 国家自然科学基金(面上项目),一种基于离子交换的钛基纳米管复合光催化剂的制备方法研究;

2. 国家自然科学基金(面上项目),两步合成法制备Zn系量子点荧光探针并应用于重金属离子检测;

3. 国家自然科学基金(面上项目),无机壳层修饰对发光中心离子掺杂的IIVI族半导体纳米发光材料表面态作用的影响;

4. 山东省自然科学基金(面上项目),高熵金属磷化物助催化剂对ZnIn2S4光阳极分解水性能和机理的影响;

5. 山东省自然科学基金(面上项目),离子掺杂的硫化物纳米材料发光中表面态的作用研究;

6. 教育部新世纪优秀人才支持计划项目,纳米发光材料的制备、表面改性及性能研究;

7. 青岛市科技发展计划项目(应用基础研究)Zn系量子点荧光探针的制备及其在海洋重金属离子检测中的应用研究


获奖

1)青岛市自然科学奖(三等奖),第一位,(2012年)

2)山东高等学校优秀科研成果奖(三等奖),第一位,(2011年)

3)山东省优秀学士学位论文指导教师(2012年)

4)中国海洋大学优秀博士学位论文指导奖(161311届)

5)中国海洋大学优秀硕士学位论文指导奖(19141211届)

6)中国海洋大学本科毕业论文优秀指导教师(20222015届)

7)中国海洋大学“天泰优秀人才奖”一等奖(15届)

8)中国海洋大学 “交通银行奖励教师基金”一等奖(6届)

9)中国海洋大学巾帼建功明星(2013年)

10)中国海洋大学2021年度课程教学优秀奖

11)中国海洋大学优秀教师(2012年,2024年)


近年代表性论文

(1)Sun X.;Cao L.X.*; et al. Phosphate-functionalized amorphous NiMoO4 nano-armor on hematite: Robust ligand-anchoring engineering for efficient corrosion-resistant seawater splitting, Journal of Energy Chemistry, 113 (2026) 289-302.

(2)Sun X.; Cao L.X.*; et al. 1T/2H MoS2 Functional Layer Boosts HER Kinetics of LaFeO3 Photocathode in Neutral Media through Hydrogen Spillover and Surface State Regulation, Advanced Functional Materials, (2025) e12082.

(3)Hao Z.C.; Cao L.X.*; et al. Enhanced recycling and utilization of industrial waste gas H2S through photoelectrochemical methods with ZnFe2O4/ZnIn2S4 heterojunction containing NiCoP co-catalyst, Chemical Engineering Journal, 517 (2025) 164553.

(4)Nie Y.; Cao L.X.*; et al. Cr doping induces the valence state reconstruction of Co3S4 enabling sulfion oxidation coupling seawater electrolysis for hydrogen production, Chemical Engineering Journal, 523 (2025) 168370.

(5)Chen H.R.;Cao L.X.*; et al. Zn-alloying induced spectral narrowing in wurtzite CuInS2 quantum dots for deep-red light-emitting diodes, Chemical Engineering Journal, 516 (2025) 164062.

(6)Hao Z.C.; Cao L.X.*; et al. Enhanced photoelectrochemical water splitting resulting from full-dimensional carrier behavior optimization of ZnIn2S4-based dimorphic homojunction, Renewable Energy, 248 (2025) 123103.

(7)Wang Z.; Cao L.X.*; et al. Selective cation exchange in colloidal Janus-type Cu2S/CuInS2 heteronanorods for boosting photocatalytic hydrogen production, Journal of Colloid and Interface Science, 695 (2025) 37768.

(8)Meng X.H. ; Cao L.X.*; et al. Bifunctional multiple transition metal phosphide modification of ZnIn2S4 photocatalysts to enhance photocatalytic hydrogen evolution, Journal of Alloys and Compounds, 1014 (2025) 178712.

(9)Li Y.X.; Cao L.X.*; et al. Interfacial Electric Field Optimization and Co-catalyst Free LaFeO3-based p-p-type Homojunction for Efficient PEC Water Splitting. Chem Eng J 2024, 485, 149797.

(10)Wang, R. N.; Cao L.X.*; et al. Synergistic Effects of Dual‐Doping with Ni and Ru in Monolayer VS2 Nanosheet: Unleashing Enhanced Performance for Acidic HER through Defects and Strain. Small 2024, DOI: 10.1002/smll.202311217.

(11)Wang, R. K.;  Cao L.X.*; et al. Exploring the photoelectrochemical process through surface state of plasmonic Ag-loaded NiFe-LDH-modified CuWO4 photoanode. Colloids and Surfaces A: Physicochemical and Engineering Aspects 689 (2024) 133647.

(12)Wang, R. K.;  Cao L.X.*; et al. Plasma-Enhanced Ni atom-modulated Co-OH to Promote Surface Charge Transfer of CuWO4 photoanode for Efficient Solar Hydrogen Evolution. Surfaces and Interfaces 48 (2024) 104269.

(13)Hao, Z. C.; Cao L.X.*; et al. Sufficient energy band utilization profited from spatially discrete heterogeneous interfaces to induce efficient photoelectrochemical water splitting for ZnIn2S4 photoanode.Surfaces and Interfaces 51 (2024) 104667.

(14)Hao, Z. C.; Cao L.X.*; et al. Complementary photoelectrochemical performances between dual heterojunctions and homojunction to achieve efficient solar water splitting of ZnIn2S4-based photoanode. Journal of Environmental Chemical Engineering 12 (2024) 114322.

(15)Wang, G. Y.;  Cao L.X.*; et al. Sulfur poisoning-resistant TiO2/Cu-doped ZnIn2S4 photoanode for achieving efficient sulfur oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 689: 133656.

(16)Wang, R. K.;  Cao L.X.*; et al. Plasma Ag-loaded bandgap variational Zn1-xMgxO-enhanced charge separation for photoelectrochemical water oxidation of CuWO4 photoanodes. Chem Eng J 2023, 455, 140861.

(17)Hao, Z. C.; Cao L.X.*; et al. ZnIn2S4/Cu2S Heterojunction Assisted by Changed Surface States. Chem Eng J 2023, 486, 143568.

(18)Li, Y. X.;  Cao L.X.*; et al. Ultra-Low Pt Doping and Pt–Ni Pair Sites in Amorphous/Crystalline Interfacial Electrocatalyst Enable Efficient Alkaline Hydrogen Evolution. Small 2023, DOI: 10. 1002/smll. 202300368.

(19) Sheng, H. B.;  Cao L.X.*;et al. Enriched Fe Doped on Amorphous Shell Enable Crystalline@Amorphous Core–Shell Nanorod Highly Efficient Electrochemical Water Oxidation. Small 2023, 19, 2300876.

(20)Feng, T.; Cao, L.X.* ; et al. Manganese Cadmium Sulfide Nanoparticles Solid Solution on Cobalt Acid Nickel Nanoflakes: A Robust Photocatalyst for Hydrogen Evolution. ChemSusChem.2022, 15, e202200288.

(21)Feng, T., Cao, L.X.* ; et al. Synthesis of NiS2/Polyvinylpyrrolidone/(CuIn)0.2Zn1.6S2 Type II Heterojunction Photocatalysts for High-Efficiency Photocatalytic Hydrogen Production Under Visible Light, International Journal of Hydrogen Energy, 2022, 47, pp. 9934-9945.

(22) Li, Y. X.; Cao L.X.*; et al. Interfacial Engineering of Polycrystalline Pt5P2 Nanocrystals and Amorphous Nickel Phosphate Nanorods for Electrocatalytic Alkaline Hydrogen Evolution. Small 2022, 2206859.

(23)Zhang, X. Y.; Cao L.X.*; et al. Crystalline/amorphous Composite Interface Induced by NaBH4 Hydrolysis Reaction: A New Interfacial Electrocatalyst for Efficient Oxygen Evolution Reaction. Mater Today Energy 2022, 26, 100987.

(24)Li, Y. X.; Cao L.X.*; et al. Coupling Porous Ni Doped LaFeO3 Nanoparticles with Amorphous FeOOH Nanosheets Yields An Interfacial Electrocatalyst for Electrocatalytic Oxygen Evolution. J Mater Chem A 2021, 9, 23545-23554

(25)Han, J. X.; Cao L.X.*; et al. The Triple Atructure Design of 2D Amorphous Fe-doped Indium Phosphate Nanosheets as A Highly Efficient Electrocatalyst for Water Oxidation. J Mater Chem A 2020, 8, 18232-18243.

(26)Lv, Q. L.; Cao L.X.*;et al. One-step Construction of Core/shell Nanoarrays with A Holey Shell and Exposed Interfaces for Overall Water Splitting. J Mater Chem A 2019, 7, 1196-1205.

(27)Guo, Z. L.; Cao L.X.*; et al. Ultrathin VS2 Nanoplate with In-plane and Out-plane Defects for An Electrochemical Supercapacitor with Ultrahigh Specific Capacitance. J Mater Chem A 2018, 6, 14681-14688.

(28)Yang, L.; Cao L.X.*; et al. Vertical Growth of 2D Amorphous FePO4 Nanosheet on Ni Foam: Outer and Inner Structural Design for Superior Water Splitting. Adv Mater 2017, 29, 1704574.