王焕磊

发布时间:2023-03-01信息来源:材料科学与工程学院浏览次数:7019

王焕磊

博士,教授,博士生导师

山东省高等学校“人才引育”创新团队负责人(新型涉海能源材料研究创新团队)

Green Energy & Environment》、《Advanced Powder Materials》期刊青年编委

联系方式—0532-66783030huanleiwang@ouc.edu.cn

研究与学习工作简历:

2017-至今,中国海洋大学,教授

2014-2016,中国海洋大学,校青年英才计划二层次,副教授

2011-2014,加拿大阿尔伯塔大学/加拿大纳米技术国家实验室,博士后

2006-2011,中国科学院上海硅酸盐研究所,工学博士

2002-2006,中国地质大学(武汉),工学学士

  

研究方向:

(1)新型炭基纳米材料的制备及其电化学储能应用:对炭基纳米材料的形貌、结构、界面特性等进行调控,实现其低成本制备与功能化改性,拓展其在超级电容器、混合离子电容器、钠/钾离子电池等方面的理论与应用研究。

(2)多功能催化材料制备及其应用:重点开展了高性能双功能或三功能电催化剂的设计研究,用于提高锌空电池、电解水等能源转换和存储性能。

  

科研项目:

主持包括国家自然科学基金面上项目等在内的项目10余项,代表性项目如下:

2014-2016 中央高校青年教师科研专项基金

2014-2016 山东省自然科学基金博士基金

2015-2017 国家自然科学基金青年科学基金

2015-2018 国家自然科学基金面上项目

2018-2020 中央高校基本科研业务费

2019-2021 中央高校基本科研业务费

2019-2021 山东省重点研发计划

2021-2023山东省自然科学基金面上项目

2022-2025 国家自然科学基金面上项目

  

学术成果:

近年来一直从事炭基材料制备及其电化学能量存储与转化方面应用研究,系统总结了炭纳米材料、炭基复合材料的合成规律,在超级电容器、二次电池、混合电容器、锌空电池等领域具备丰富的实践经验,在J. Am. Chem. Soc., ACS Nano, Energy Environ. Sci., Nano Lett., Nano Energy, Energy Storage Mater., Nano Res., J. Mater. Chem. A, Carbon, J. Power Sources, Chem. Eng. J.等学术刊物上发表论文110余篇(ORCIDhttps://orcid.org/0000-0001-8218-1762), 论文被引用8300次,H因子39;授权发明专利5件;荣获山东省高等学校科学技术奖一等奖1项。担任Adv. Mater.Adv. Funct. Mater.J. Mater. Chem. AChem. Eng. J.ACS Appl. Mater. InterfacesElectrochim. Acta等期刊审稿人工作,并担任基金委、科技部评审专家等相关工作。

  

代表性学术论文(*标注通讯作者)

[1] P. Li, H.  Wang*, et al, “Salt assisted fabrication of lignin-derived Fe, N, P, S codoped porous carbon as trifunctional catalyst for Zn-air batteries and water-splitting devices”, Chemical Engineering Journal, 421, 129704, 2021.

[2] W. Fan, J. Ding*, J. Ding, Y. Zheng, W. Song, J. Lin, C. Xiao, C. Zhong*, H. Wang*, et al, “Identifying heteroatomic and defective sites in carbon with dual‑ion adsorption capability for high energy and power zinc ion capacitor”, Nano-Micro Letters, 13, 59, 2021.

[3] Y. Sun, H. Wang*, et al, “Sulfur-rich graphene nanoboxes with ultra-high potassiation capacity at fast charge: storage mechanisms and device performance”, ACS Nano, 15, 1652-1665, 2021.

[4] L. Tao, Y. Yang, H. Wang,* et al, “Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: performance and storage mechanisms”, Energy Storage Materials, 27, 212-225, 2020.

[5] C. Liu, H. Wang*, et al, “Cellulose-derived carbon-based electrodes with high capacitance for advanced asymmetric supercapacitors”, Journal of Power Sources, 457, 228056, 2020.

[6] H. Zhang, X. Xu, H. Wang*, et al, “Lithium ion capacitor with identical carbon electrodes yields 6s charging and 100000 cycles stability with 1% capacity fade”, ACS Sustainable Chemistry & Engineering, 7, 2867-2877, 2019.

  

[7] H. Liu, X. Liu, H. Wang*, et al, “High-performance sodium ion capacitor constructed by well-matched dual carbon electrodes from a single biomass”, ACS Sustainable Chemistry & Engineering, 7, 12188-12199, 2019.

[8] Y. Cui, W. Liu*, Y. Lyu, Y. Zhang, H. Wang*, et al, “All carbon lithium capacitor based on salt crystals designed N-doping porous carbon electrodes with superior energy storage”, Journal of Materials Chemistry A, 6, 18276-18285, 2018.

[9] Y. Lv, H. Wang*, et al, “Balanced mesoporous nickel cobaltite-graphene and doped carbon electrodes for high-performance asymmetric supercapacitor”, Chemical Engineering Journal, 326, 401-410, 2017.

[10] Y. Zhao, Y. Cui, J. Shi, W. Liu, Z. Shi*, S. Chen, X. Wang, H. Wang*, “Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors”, Journal of Materials Chemistry A, 5, 15243-15252, 2017.

[11] Y. Cui, H. Wang*, et al, “Tuning the morphology and structure of nanocarbons with activating agents for ultrafast ionic liquid-based supercapacitors”, Journal of Power Sources,361, 182-194, 2017.

[12] H. Wang, et al, “Excellent energy-power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes”, Journal of Materials Chemistry A, 4, 5149-5158, 2016.

[13] W. Yu, H. Wang*, et al, “N,O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes”, Journal of Materials Chemistry A, 4, 5973-5983, 2016.

[14] Z. Li, J. Ding, H. Wang*, et al, “High rate SnO2-graphene dual aerogel anodes and their kinetics of lithiation and sodiation”, Nano Energy, 15, 369-378, 2015.

[15] H. Wang, et al, “Hybrid device employing three-dimentional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide”, Nano Letters, 14, 1987-1994, 2014.

[16] Z. Li, Z. Xu, H. Wang*, et al, “Colossal pseudocapacitance in a high functionality-high surface area carbon anode doubles the energy of an asymmetric supercapacitor”, Energy & Environmental Science, 7, 1708-1718, 2014.

[17] H. Wang, et al, “Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy”, ACS Nano, 7 (6), 5131-5141, 2013.

[18] Z. Li, Z. Xu, X. Tan, H. Wang*, et al, “Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors”, Energy & Environmental Science, 6 (3), 871-878, 2013.

[19] H. Wang, et al, “Facile approach to prepare nickel cobaltite nanowire materials for supercapacitor”, Small, 7 (17), 2454-2459, 2011.

[20] H. Wang, et al, “High hydrogen storage capacity of porous carbons prepared by using activated carbon”, Journal of the American Chemical Society, 131 (20), 7016-7022, 2009.

  

热忱欢迎喜欢科研的同学报考本课题组,一起攀登科学创新高峰!

  

信息更新于20221