王焕磊

发布时间:2018-04-08信息来源:材料科学与工程学院浏览次数:5590



基本信息

王焕磊,博士,教授,博士生导师

山东省高等学校人才引育创新团队负责人(新型涉海能源材料研究创新团队)

Advanced Powder Materials》期刊特任编委

Green Energy & Environment》、《Rare Metals》、《eScience》期刊青年编委

科睿唯安2022年度高被引学者

联系方式

huanleiwang@ouc.edu.cn

研究与学习工作简历

2017-至今中国海洋大学,教授

2014-2016 中国海洋大学,校青年英才计划二层次,副教授

2011-2014 加拿大阿尔伯塔大学/加拿大纳米技术国家实验室,博士后

2006-2011 中国科学院上海硅酸盐研究所,工学博士

2002-2006 中国地质大学(武汉),工学学士

研究方向

先进碳能源材料的设计及其储能应用:对碳材料的形貌、结构、界面特性等进行调控,实现其低成本制备与功能化改性,拓展其在超级电容器、混合离子电容器、钠/钾离子电池等方面的理论与应用研究。

☆先进多功能催化材料的制备及其应用:通过界面工程、杂原子掺杂、形貌工程和缺陷工程等开展高性能双功能或三功能电催化剂的设计制备,用于实现锌-空气电池、电解水等能源转换和存储性能的提升。

代表性科研项目:

国家自然科学基金面上项目(2022-2025)

中央高校基本科研业务费(2022-2024)

山东省自然科学基金面上项目(2021-2023)

山东省重点研发计划(2019-2021)

中央高校基本科研业务费(2019-2021)

国家自然科学基金面上项目(2015-2018)

国家自然科学基金青年科学基金(2015-2017)

学术成果:

围绕国家“海洋强国”和“碳达峰碳中和”双碳战略,以材料为载体、能源为目标,长期从事纳米碳储能研究,发展了多孔碳掺杂与形貌构筑并行的制备技术,解决了高离子传输和高活性位点共存的科学难题;提出了致密结构碳基电极材料设计新思路,实现了良好导电网络和传质通道的致密化材料;揭示了电极孔隙、掺杂、缺陷、形貌、石墨化等微观结构与电化学性能关系;实现了从材料设计到兼具能量和功率储能器件的组装,具备产业化潜力。

已发表SCI期刊收录论文150余篇,以第一/通讯作者身份在J. Am. Chem. Soc.Adv. Mater., Energy Environ. Sci.ACS NanoAdv. Funct. Mater., Energy Storage Mater.Appl. Catal. B EnvironNano-Micro Lett.ACS Catal.等期刊发表SCI论文80(其中34篇影响因子大于10),论文被引用1万余次,H因子47。授权中国发明专利5项、授权美国专利2项。荣获山东省高等学校科学技术奖一等奖1项。担任Adv. Mater.Adv. Funct. Mater.J. Mater. Chem. AChem. Eng. J.ACS Appl. Mater. Interfaces Electrochim. Acta等期刊审稿人工作,并担任基金委、科技部评审专家等相关工作。

代表性学术论文(*标注通讯作者)

[1] H. Liang, Z. Sun, M. Zhang, W. Hu, J. Shi, J. Wei, W. Tian, M. Huang, J. Wu, and H. Wang*, “Constructing carbon nanobubbles with boron doping as advanced anode for realizing unprecedently ultrafast potassium ion storage”, Energy & Environmental Materials, DOI: 10.1002/eem2.12559, 2022.

[2] K. Li, P. Li, Z. Sun, M. Huang, J. Chen, S. Liu, Z. Shi, and H. Wang*, “All-cellulose-based quasi-solid-state supercapacitor with nitrogen and boron dual-doped carbon electrodes exhibiting high energy density and excellent cyclic stability”, Green Energy & Environment, DOI: 10.1016/j.gee.2022.01.002, 2022.

[3] G. Cheng, W. Zhang, W. Wang, H. Wang*, et al, “Sulfur and nitrogen codoped cyanoethyl cellulose-derived carbon with superior gravimetric and volumetric capacity for potassium ion storage”, Carbon Energy, 4, 986-1001, 2022.

[4] Z. Sun, H. Liang, H. Wang*, et al, “Spatially confined “edge-to-edge” strategy for achieving compact Na+/K+ Storage: Constructing hetero-Ni/Ni3S2 in densified carbons”, Advanced Functional Materials, 32, 2203291, 2022.

[5] J. Wu, Z. Ju, X. Zhang, A. C. Marschilok, K. J. Takeuchi, H. Wang*, et al, “Gradient design for high-energy and high-power batteries”, Advanced Materials, 34, 2202780, 2022.

[6] P. Li, H. Wang*, et al, “Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries”, Applied Catalysis B: Environmental, 316, 121674, 2022.

[7] F. Qiang, J. Feng, H. Wang*, et al, “Oxygen engineering enables N-doped porous carbon nanofibers as oxygen reduction/evolution reaction electrocatalysts for flexible Zinc–air batteries”, ACS Catalysis, 12(7), 4002-4015, 2022.

[8] Z. Gao, L. Han, H. Gao, J. Chen*, Z. Sun, C. Zhu, Y. Zhang, J. Shi, S. Chen*, and H. Wang*, “Coupling core–shell Bi@Void@TiO2 heterostructures into carbon nanofibers for achieving fast potassium storage and long cycling stability”, Journal of Materials Chemistry A, 10, 12908-12920, 2022.

[9] H. Xu, G. Zhang, Y. Wang, Y. Wang, H. Wang*, et al,“Heteroatoms-doped carbon nanocages with enhanced dipolar and defective polarization toward light-weight microwave absorbers”, Nano Research, 15, 8705-8713, 2022.

[10] G. Cheng, S. Liu* X. Wang X. Li, Y. Su, J. Shi, M. Huang, Z. Shi, H. Wang*, et al, “CoZn nanoparticles@hollow carbon tubes enabled high-performance potassium metal batteries”, ACS Applied Materials & Interfaces, 14, 45364-45372, 2022.

[11] P. Li, H.Wang*, et al, “Salt assisted fabrication of lignin-derived Fe, N, P, S codoped porous carbon as trifunctional catalyst for Zn-air batteries and water-splitting devices”, Chemical Engineering Journal, 421, 129704, 2021.

[12] W. Fan, J. Ding*, J. Ding, Y. Zheng, W. Song, J. Lin, C. Xiao, C. Zhong*, H. Wang*, et al, “Identifying heteroatomic and defective sites in carbon with dualion adsorption capability for high energy and power zinc ion capacitor”, Nano-Micro Letters, 13, 59, 2021.

[13] Y. Sun, H. Wang*, et al, “Sulfur-rich graphene nanoboxes with ultra-high potassiation capacity at fast charge: storage mechanisms and device performance”, ACS Nano, 15, 1652-1665, 2021.

[14] L. Tao, Y. Yang, H. Wang,* et al, “Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: performance and storage mechanisms”, Energy Storage Materials, 27, 212-225, 2020.

[15] C. Liu, H. Wang*, et al, “Cellulose-derived carbon-based electrodes with high capacitance for advanced asymmetric supercapacitors”, Journal of Power Sources, 457, 228056, 2020.

[16] H. Liu, X. Liu, H. Wang*, et al, “High-performance sodium ion capacitor constructed by well-matched dual carbon electrodes from a single biomass”, ACS Sustainable Chemistry & Engineering, 7, 12188-12199, 2019.

[17] Y. Cui, W. Liu*, Y. Lyu, Y. Zhang, H. Wang*, et al, “All carbon lithium capacitor based on salt crystals designed N-doping porous carbon electrodes with superior energy storage”, Journal of Materials Chemistry A, 6, 18276-18285, 2018.

[18] N. Mao, H. Wang*, Y. Sui, Y. Cui, J. Pokrzywinski, J. Shi, W. Liu, S. Chen, X. Wang, and D. Mitlin*, “Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading”, Nano Research, 10, 1767-1783, 2017.

[19] Y. Lv, H. Wang*, et al, “Balanced mesoporous nickel cobaltite-graphene and doped carbon electrodes for high-performance asymmetric supercapacitor”, Chemical Engineering Journal, 326, 401-410, 2017.

[20] Y. Zhao, Y. Cui, J. Shi, W. Liu, Z. Shi*, S. Chen, X. Wang, H. Wang*, “Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors”, Journal of Materials Chemistry A, 5, 15243-15252, 2017.

[21] Y. Cui, H. Wang*, et al, “Tuning the morphology and structure of nanocarbons with activating agents for ultrafast ionic liquid-based supercapacitors”, Journal of Power Sources,361, 182-194, 2017.

[22] H. Wang, et al, “Excellent energy-power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes”, Journal of Materials Chemistry A, 4, 5149-5158, 2016.

[23] W. Yu, H. Wang*, et al, “N,O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes”, Journal of Materials Chemistry A, 4, 5973-5983, 2016.

[24] Z. Li, J. Ding, H. Wang*, et al, “High rate SnO2-graphene dual aerogel anodes and their kinetics of lithiation and sodiation”, Nano Energy, 15, 369-378, 2015.

[25] H. Wang, et al, “Hybrid device employing three-dimentional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide”, Nano Letters, 14, 1987-1994, 2014.

[26] Z. Li, Z. Xu, H. Wang*, et al, “Colossal pseudocapacitance in a high functionality-high surface area carbon anode doubles the energy of an asymmetric supercapacitor”, Energy & Environmental Science, 7, 1708-1718, 2014.

[27] H. Wang, et al, “Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy”, ACS Nano, 7 (6), 5131-5141, 2013.

[28] Z. Li, Z. Xu, X. Tan, H. Wang*, et al, “Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors”, Energy & Environmental Science, 6 (3), 871-878, 2013.

[29] H. Wang, et al, “Facile approach to prepare nickel cobaltite nanowire materials for supercapacitor”, Small, 7 (17), 2454-2459, 2011.

[30] H. Wang, et al, “High hydrogen storage capacity of porous carbons prepared by using activated carbon”, Journal of the American Chemical Society, 131 (20), 7016-7022, 2009.

  

热忱欢迎喜欢科研的同学报考“先进碳能源材料”课题组,一起攀登科学创新高峰!

  

信息更新于20232